ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Rajgopal Vijaykumar, Mohsen Khatib-Rahbar
Nuclear Technology | Volume 128 | Number 3 | December 1999 | Pages 313-326
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A3034
Articles are hosted by Taylor and Francis Online.
The applicability of the empirical approach in the CONTAIN computer code for the simulation of induced flow and heat transfer in asymmetrically heated, vertical parallel-plate channels is investigated. The physical situation is related to containment cooling in the Westinghouse AP600 reactor. The countercurrent flow of air in the channel is induced by the thermal buoyancy force. In CONTAIN, the heat and mass transfer analogy (with Sherwood number calculated based on an empirical Nusselt number correlation for fully developed flows), including the film theory correction for high mass transfer, is used to calculate film evaporation. The buoyancy-induced flow is calculated through coupled solutions to lumped-parameter mass, energy, and momentum equations. The CONTAIN predictions are first compared with the Purdue results of a more detailed two-dimensional model under identical conditions in a simple parallel-plate channel. Then the CONTAIN predictions are compared with the results of the Purdue two-dimensional model and with data for two selected (forced and free convection) tests performed in the Westinghouse Large Scale Test (LST) Facility. Analyses show that the CONTAIN-calculated Sherwood numbers, the total heat fluxes, the steam mass fraction, and the bulk velocity in the channel are comparable to the two-dimensional Purdue investigations for the parallel-plate simulations and for the conditions of the Westinghouse LST Facility.