ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Yeon Soo Kim, D. R. Olander, S. K. Yagnik
Nuclear Technology | Volume 128 | Number 3 | December 1999 | Pages 300-312
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT99-A3033
Articles are hosted by Taylor and Francis Online.
As a means of improving the gap-thermal conductance, a liquid metal (LM) is proposed as the gap-filling material replacing helium gas in the conventional light water reactor fuel rod. The potential application of the concept includes power reactor fuel rods, special-purpose test-reactor experimental rods, and mixed-oxide fuel rods. Novel fabrication methods to ensure a uniform LM-filled gap between the fuel and the cladding of minirods have been developed. The main concern was overcoming the large surface tension of an LM to eliminate LM-free spots in the gap. Compatibility tests of the LM with a Zircaloy tube have been conducted. Liquid gallium showed excessive reaction with Zircaloy at 350°C for a month. Liquid Bi-Sn-Pb alloy, on the other hand, showed a nearly negligible reaction with Zircaloy under the same conditions. Thermal superiority of the LM-bonded gap over a conventional helium-gas gap in a miniature fuel rod was confirmed through theoretical calculations and experimental measurements. The experiments involved water-quenching the element from 600°C and measuring the decrease of the fuel centerline temperature. The LM-bonded element reached 100°C in 10 s, while the gas-bonded element required nearly 100 s to attain this temperature.