ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Sylvie Aniel-Buchheit, André Puill, Richard Sanchez, Mireille Coste
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 245-256
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A3029
Articles are hosted by Taylor and Francis Online.
The feasibility of 100% mixed-oxide (MOX) fuel recycling in a standard pressurized water reactor (PWR) is explored. The plutonium neutronic specificity is analyzed and compared with uranium. The objective is to identify the generic aspects that could lead to current PWR design modifications. The plutonium isotopic composition was taken as a parameter.Accidents dealing with a change of the moderator density are of particular interest (especially considering that control worth is significantly reduced with MOX fuel). Study of core global draining leads to the following conclusion: Only very poor quality plutonium fuel (low fissile content) cannot be used in a 900-MW(electric) PWR because of a positive global draining reactivity effect. Study of the cooling accident (increase of moderator density) proves that the spurious opening of a secondary side valve is the most penalizing scenario in the case of MOX fuel utilization. The core reactivity was controlled in this study by 57 control rod clusters made of B4C rods having a 90% 10B content and a hafnium clad. The hypothetical return to criticality depends on plutonium isotopic composition. But the core is kept subcritical for all isotopic compositions provided an increase of the soluble boron 10B content up to a value of 40%. No major obstacle to the 100% MOX 900-MW(electric) PWR feasibility was found.