ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sylvie Aniel-Buchheit, André Puill, Richard Sanchez, Mireille Coste
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 245-256
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A3029
Articles are hosted by Taylor and Francis Online.
The feasibility of 100% mixed-oxide (MOX) fuel recycling in a standard pressurized water reactor (PWR) is explored. The plutonium neutronic specificity is analyzed and compared with uranium. The objective is to identify the generic aspects that could lead to current PWR design modifications. The plutonium isotopic composition was taken as a parameter.Accidents dealing with a change of the moderator density are of particular interest (especially considering that control worth is significantly reduced with MOX fuel). Study of core global draining leads to the following conclusion: Only very poor quality plutonium fuel (low fissile content) cannot be used in a 900-MW(electric) PWR because of a positive global draining reactivity effect. Study of the cooling accident (increase of moderator density) proves that the spurious opening of a secondary side valve is the most penalizing scenario in the case of MOX fuel utilization. The core reactivity was controlled in this study by 57 control rod clusters made of B4C rods having a 90% 10B content and a hafnium clad. The hypothetical return to criticality depends on plutonium isotopic composition. But the core is kept subcritical for all isotopic compositions provided an increase of the soluble boron 10B content up to a value of 40%. No major obstacle to the 100% MOX 900-MW(electric) PWR feasibility was found.