ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Michitsugu Mori
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 205-215
Technical Paper | RETRAN | doi.org/10.13182/NT99-A3025
Articles are hosted by Taylor and Francis Online.
The advanced boiling water reactor (ABWR) has ten reactor-internal pumps peripherally mounted on the bottom of a reactor vessel. Analytical simulation of reactor-internal pumps unique to the ABWR requires new modeling because of the difference in core flow characteristics between the reactor-internal pumps and the two external-recirculation pumps of the primary outer loops with the jet pumps in a current boiling water reactor. Efforts in this work focused on modeling and simulation of reactor-internal pumps and core flow of the ABWR, using the RETRAN-3D code, the computer program for transient thermal-hydraulic analysis of a complex fluid flow system, without multidimensional kinetics. Included are modeling of the core and reactor pressure vessel with ten reactor-internal pumps, and simulation of the events of reactor-internal-pumps trip during the startup-phase tests, which are unable to be done in the simulation of a current BWR. Sensitivity analyses on the recirculation flow control and the slip model were also performed. The predictions by the RETRAN-3D code successfully tracked the measured data of reactor-internal-pump trip during the startup-phase test. The present analytical simulations could demonstrate the validation of the RETRAN-3D code applicable to the ABWR with the pump model of reactor-internal pumps in the program.