ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Rafael Macian, Peter Cebull, Paul Coddington, Mark Paulsen
Nuclear Technology | Volume 128 | Number 2 | November 1999 | Pages 139-152
Technical Paper | RETRAN | doi.org/10.13182/NT99-A3021
Articles are hosted by Taylor and Francis Online.
RETRAN-3D-MOD002.0 includes a five-equation flow field model to extend the code's analytical capabilities to situations in which thermodynamic nonequilibrium phenomena are important. Evaluation of this model's performance against several depressurization and repressurization transients has shown severe numerical and convergence problems related to the calculation of the interfacial energy and mass transfer. To remove these code limitations, a new interfacial mass and energy transfer model has been developed and implemented in RETRAN-3D. This model calculates the phase change based on the net heat transfer to the liquid-vapor interface at saturation. The heat transfer for each phase is equal to the product of the interfacial area density, a heat transfer coefficient, and the difference between the interface and the bulk temperature of the respective phase. A flow regime map based on the work of Taitel and Dukler is used to identify the flow regime in a control volume and to select the appropriate correlations for these quantities.Assessment of the new model's performance includes the simulation of an experimental depressurization transient, OMEGA test 9; a turbine trip transient in a BWR/4; and a very fast depressurization transient, the Edwards pipe problem. The results are free from the previous numerical problems and show a good agreement with experimental values.