ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Takanari Ogata, Takeshi Yokoo
Nuclear Technology | Volume 128 | Number 1 | October 1999 | Pages 113-123
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT99-A3018
Articles are hosted by Taylor and Francis Online.
An irradiation behavior analysis code for metallic fast reactor fuel, ALFUS, has been revised so that it can be applied to stress-strain analysis of U-Pu-Zr ternary fuel pins. The stress-strain calculation in ALFUS is closely coupled with models for slug deformation mechanisms, such as swelling due to accumulation of fission gas bubbles and nongaseous fission products. These models include the key parameters: threshold gas swelling for open pore formation, compressibility of the open pores, and accumulation rate of nongaseous fission products. The parameter values have been determined based on theoretical or experimental considerations. An empirical model has also been introduced into ALFUS to treat the effect of the large radial cracking that is a characteristic phenomenon in the ternary fuel slug. The irradiation behaviors of the ternary fuel pins of various design specifications have been analyzed using ALFUS. The analytical results are in fair agreement with the measured data for fission gas release, slug axial elongation, and cladding deformation. The calculated histories of swelling components can reasonably explain the dependency of measured cladding strain data on burnup and initial fuel smear density. One may conclude that ALFUS is valid for irradiation behavior analysis of the metallic fuel pin and is applicable to a wide range of fuel pin specifications. The methodology developed for ALFUS can be a basis for the design procedure for the metallic fuel pin.