ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Takanari Ogata, Takeshi Yokoo
Nuclear Technology | Volume 128 | Number 1 | October 1999 | Pages 113-123
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT99-A3018
Articles are hosted by Taylor and Francis Online.
An irradiation behavior analysis code for metallic fast reactor fuel, ALFUS, has been revised so that it can be applied to stress-strain analysis of U-Pu-Zr ternary fuel pins. The stress-strain calculation in ALFUS is closely coupled with models for slug deformation mechanisms, such as swelling due to accumulation of fission gas bubbles and nongaseous fission products. These models include the key parameters: threshold gas swelling for open pore formation, compressibility of the open pores, and accumulation rate of nongaseous fission products. The parameter values have been determined based on theoretical or experimental considerations. An empirical model has also been introduced into ALFUS to treat the effect of the large radial cracking that is a characteristic phenomenon in the ternary fuel slug. The irradiation behaviors of the ternary fuel pins of various design specifications have been analyzed using ALFUS. The analytical results are in fair agreement with the measured data for fission gas release, slug axial elongation, and cladding deformation. The calculated histories of swelling components can reasonably explain the dependency of measured cladding strain data on burnup and initial fuel smear density. One may conclude that ALFUS is valid for irradiation behavior analysis of the metallic fuel pin and is applicable to a wide range of fuel pin specifications. The methodology developed for ALFUS can be a basis for the design procedure for the metallic fuel pin.