ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Yassin A. Hassan, Hagop R. Barsamian
Nuclear Technology | Volume 128 | Number 1 | October 1999 | Pages 58-74
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A3014
Articles are hosted by Taylor and Francis Online.
The dynamic subgrid-scale (DSGS) closure model is used in a large eddy simulation computer program for incompressible isothermal flows. One of the advantages of the DSGS model is the exclusion of a model coefficient. This model coefficient is evaluated dynamically at each nodal location for a given time step by filtering operations on the grid level and a test filter level. A nonstaggered array tube bundle geometry arrangement is considered in doubly periodic boundary conditions for two-dimensional simulations at high Reynolds number. Results of the DSGS simulation are obtained in the form of power spectral densities and visualization of flow characteristics. The DSGS model simulation results are compared to the Smagorinsky eddy viscosity model simulation and available experimental data. The DSGS model simulation is found to be in good agreement with spectral data available from experiments in similar bundle arrangements. Coherent eddy structures were observed. Body forces acting on the tubes showed satisfactory characteristics. Integral length and timescales are evaluated using correlation functions that describe the turbulence structure. The applicability of large eddy simulation to complex engineering flow situations has been shown using the DSGS model with applications to steam generator bundles for understanding of flow-induced vibration problems revealing the physical phenomena of the flow.