ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
A review of workforce trends in the nuclear community
The nuclear community is undergoing a moment of unprecedented interest and growth not seen in decades. The passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act are providing a multitude of new funding opportunities for the nuclear community, and not just the current fleet. A mix of technologies and reactor types are being evaluated and deployed, with Vogtle Units 3 and 4 coming on line later this year, the Advanced Reactor Demonstration Projects of X-energy and TerraPower, and NuScale’s work with Utah Associated Municipal Power Systems to build a first-of-a-kind small modular reactor, making this is an exciting time to join the nuclear workforce.
Matjaz Ravnik, Tomaz Zagar, Andreja Persic
Nuclear Technology | Volume 128 | Number 1 | October 1999 | Pages 35-45
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT99-A3012
Articles are hosted by Taylor and Francis Online.
Calculations of fuel element burnup for realistic mixed core conditions in a 250-kW TRIGA Mark II reactor are presented. Two types of fuel elements are considered: 70% enriched FLIP and 20% enriched standard fuel elements. Two calculation models are compared. The first is based on a one-dimensional two-group diffusion approximation (the TRIGAP computer code), and the second is based on a two-dimensional four-group diffusion equation (the TRIGLAV computer code). In both cases the unit-cell group constants are generated with the WIMS code. Results of the calculations are intercompared to evaluate the influence of the two-dimensional effects on fuel element burnup. The following two-dimensional effects are considered: mixed rings, in-core water gaps, vicinity of control rods, and asymmetric core loading patterns. Relative differences in fuel element burnup of 10% on average and up to 80% in extreme cases are observed because of the two-dimensional effects. The accuracy of the calculation is estimated also by comparing the calculated results to the measurements using the reactivity method.