ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Trevor V. Dury, Brian L. Smith, Günter S. Bauer
Nuclear Technology | Volume 127 | Number 2 | August 1999 | Pages 218-232
Technical Paper | Accelerators | doi.org/10.13182/NT99-A2997
Articles are hosted by Taylor and Francis Online.
The only two possibilities for examining the thermal-hydraulic behavior of a liquid-metal spallation source target are either to build a full-size target and install it in a proton beam, suitably supplied with coolant under design conditions and instrumented, or to simulate such a target using a state-of-the-art computational fluid dynamics computer code. This latter approach has been pursued in the design of the proposed European Spallation Source for a target filled with liquid mercury coolant under forced circulation. Results indicate that a carefully designed target can remove the 2.8 MW of heat that neutronics calculations predict will be deposited within the coolant and the target body, without the overheating of either.