ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nuclear moratoriums crumble around the world
The recent surge in positive sentiment about nuclear as the most viable answer to global energy needs and decarbonization goals has found governments around the world taking steps to reverse course on decades-old bans, moratoriums, and restrictions on new nuclear development.
Byung-Ho Lee, Yang-Hyun Koo, Dong-Seong Sohn
Nuclear Technology | Volume 127 | Number 2 | August 1999 | Pages 151-159
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT99-A2991
Articles are hosted by Taylor and Francis Online.
A model for rim porosity that takes into account the effect of overpressurization on rim pores is proposed for high-burnup UO2 fuel. It is based on the assumption that all the fission gases produced are retained in rim pores, and the threshold pellet average burnup required for the formation of the rim region is 40 MWd/kg U. In addition, a thermal conductivity correlation is proposed that uses the rim porosity model developed. This correlation for the rim region considers both degradation of thermal conductivity with burnup across the fuel pellet and additional degradation at the pellet rim due to very high porosity. To calculate the temperature profile across the fuel pellet where the rim region is formed, the present correlation for the rim region is combined with the HALDEN, MATPRO, and SIMFUEL correlations for thermal conductivity for the fuel interior region where the rim feature does not exist. Application of the present correlation to the measured HALDEN fuel centerline temperature (Nuclear Energy Agency public database IFA-562) shows that good agreement between the calculated and measured fuel centerline temperature is obtained when the present correlation is combined with HALDEN thermal conductivity. On the other hand, when it is combined with SIMFUEL thermal conductivity, which does not consider the effect on thermal conductivity of fission gases and other volatile fission products, lower centerline temperature is obtained due to the characteristics of the SIMFUEL.