ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nuclear moratoriums crumble around the world
The recent surge in positive sentiment about nuclear as the most viable answer to global energy needs and decarbonization goals has found governments around the world taking steps to reverse course on decades-old bans, moratoriums, and restrictions on new nuclear development.
Francisco Martín-Fuertes Hernández-Sonseca
Nuclear Technology | Volume 127 | Number 2 | August 1999 | Pages 141-150
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2990
Articles are hosted by Taylor and Francis Online.
The ability of the probabilistic safety assessment code MELCOR 1.8.2 to deal with station blackout accidents, characterized by prolonged in-vessel and primary system vapor natural circulation, is analyzed. Results of the analysis recommended a modification of the gravitational term in the momentum equation and the inclusion of the convective term to capture in-vessel natural circulation. Moreover, certain guidelines to build the thermal-hydraulic and core degradation numerical meshes must be respected. A model is proposed that has been applied to simulate the Three Mile Island Unit 2 phase 2 accident, for which natural circulation flows were supposed to take place. The compatibility of the establishment of natural circulation flow with accident measurements and estimations is observed. Furthermore, core degradation results seem reasonable at first sight, although improvements concerning these models are suggested.The ability of the model to cope with a full sequence in a commercial plant is demonstrated: A station blackout for a one-loop pressurized water reactor was calculated from the initial event to the instant of primary system failure. In-vessel and ex-vessel natural circulation flows of vapor are automatically established, and heatup and fission product release rates are estimated.