ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nuclear moratoriums crumble around the world
The recent surge in positive sentiment about nuclear as the most viable answer to global energy needs and decarbonization goals has found governments around the world taking steps to reverse course on decades-old bans, moratoriums, and restrictions on new nuclear development.
Chaung Lin, Tsung-Ming Lin
Nuclear Technology | Volume 127 | Number 1 | July 1999 | Pages 102-112
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT99-A2987
Articles are hosted by Taylor and Francis Online.
Neural networks such as the radial basis function network, adaptive neuro-fuzzy inference systems, and the multilayer feedforward neural network were adopted to model the steam generator water level, which was intended to be the analytic redundancy in the signal validation system. The training data were the simulation results of the small-demand turbine power variations around the steady state. The test data were from two small-load maneuvers: the load reduction from 100 to 50% of the rated power, and one feedwater pump trip event. The network training required only a short time, and the simulation results show that the neural networks are suitable for the modeling of steam generator water level.