ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Chaung Lin, Tsung-Ming Lin
Nuclear Technology | Volume 127 | Number 1 | July 1999 | Pages 102-112
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT99-A2987
Articles are hosted by Taylor and Francis Online.
Neural networks such as the radial basis function network, adaptive neuro-fuzzy inference systems, and the multilayer feedforward neural network were adopted to model the steam generator water level, which was intended to be the analytic redundancy in the signal validation system. The training data were the simulation results of the small-demand turbine power variations around the steady state. The test data were from two small-load maneuvers: the load reduction from 100 to 50% of the rated power, and one feedwater pump trip event. The network training required only a short time, and the simulation results show that the neural networks are suitable for the modeling of steam generator water level.