ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Christian Poletiko, Didier Jacquemain, Claude Hueber
Nuclear Technology | Volume 126 | Number 2 | May 1999 | Pages 215-228
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT99-A2969
Articles are hosted by Taylor and Francis Online.
Extensive experimentation and modeling have been performed within the framework of studying iodine behavior in containments in the event of a nuclear reactor severe accident. The results from bench-scale experiments conducted at the French Nuclear Protection and Safety Institute, Cadarache; AEA Technology, Harwell; and Atomic Energy of Canada Limited, Whiteshell are used to update the French IODE code. The work focuses on the behavior of inorganic iodine species. The challenge of the semiempirical approach adopted in IODE is to represent by simple correlations the complex chemistry occurring in the containment sump. Difficulties in interpreting the bench-scale experiments are addressed and mainly concern uncertainties in the knowledge of volatile iodine mass transfers, pH drifts during the experiments, and the possibility of iodide (I-) sorption on immersed painted surfaces. Improvements in the modeling are presented; the needs for additional experimental data and a more systematic experimental approach to the effects of the different parameters are emphasized.