ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
F. U. Ahmed, S. I. Bhuiyan, A. S. Mollah, M. R. Sarder, M. Q. Huda, M. Rahman, M. A. W. Mondal
Nuclear Technology | Volume 126 | Number 2 | May 1999 | Pages 196-204
Technical Paper | Radiation | doi.org/10.13182/NT99-A2967
Articles are hosted by Taylor and Francis Online.
The shielding effectiveness of locally developed polyboron and ilmenite-magnetite (I-M) concrete is investigated using the reactor neutron beam of the 3-MW TRIGA Mark II research reactor at the Atomic Energy Research Establishment, Savar, Dhaka. The effective removal cross sections for the foregoing individual shielding materials as well as their combinations are obtained from transmission data using two-group neutron fluxes defined by a Cd-cutoff value. The experimental transmission factors for I-M concrete and polyboron are compared with those obtained from transport calculations performed with the ANISN deterministic code in the forward mode and the MCNP4B Monte Carlo code. The ANISN code is used for the fast neutron group flux (Cd-cutoff flux), and the MCNP4B code is used for the total neutron flux. The agreement between the experiment and calculation is fairly good at deep penetration, but at initial points, some disagreement is observed. This observation is valid for both polyboron and I-M concrete.