ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Andreas Schaffrath, E. F. Hicken, H. Jaegers, H.-M. Prasser
Nuclear Technology | Volume 126 | Number 2 | May 1999 | Pages 123-142
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A2962
Articles are hosted by Taylor and Francis Online.
Siemens AG is developing the new innovative boiling water reactor concept SWR1000. New features are passive safety systems, such as emergency condensers, building condensers, passive pressure pulse transmitters, and gravity-driven core flood lines.For experimental investigation of emergency condenser effectiveness, the NOKO test facility has been constructed at Forschungszentrum Jülich in cooperation with Siemens. This test facility has an operating pressure of 10 MPa and a maximum power of 4 MW for steam production. The emergency condenser bundle consists of eight tubes and is fabricated with planned geometry and material of the SWR1000. In more than 200 experiments, the emergency condenser power was determined as a function of pressure, water level, and concentration of noncondensables in the pressure vessel as well of pressure, water level, and temperature in the condenser.Posttest calculations of NOKO experiments were performed with an improved version of ATHLET. To calculate the heat transfer coefficients during condensation in horizontal tubes, it was necessary to develop the KONWAR module and to implement it in ATHLET. KONWAR is based on the flow regime map of Tandon and includes several semiempirical correlations for the determination of the heat transfer coefficients. The comparison between calculations and experiments shows good agreement.