ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Shih-Jen Wang, Chun-Sheng Chien, Te-Chuan Wang
Nuclear Technology | Volume 126 | Number 1 | April 1999 | Pages 1-9
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2954
Articles are hosted by Taylor and Francis Online.
The MELCOR code, developed by Sandia National Laboratories (SNL), is capable of simulating the severe accident phenomena of light water reactor nuclear power plants (NPPs).A specific station blackout accident (TMLB' sequence) for Maanshan NPP is simulated using the MELCOR 1.8.3 code. The MELCOR input deck for Maanshan NPP is established based on Maanshan NPP design data and the MELCOR users' guides. The initial steady-state conditions are generated with a developed self-initialization algorithm. The main severe accident phenomena and the corresponding fission product release fractions associated with the TMLB' sequence were simulated. The sequence of events up to the vessel breach is similar to that in the SNL report simulated with MELCOR 1.8.2. The predicted results provide useful information for the probabilistic risk assessment (PRA) of Maanshan NPP. This tool will be applied to the PRA, the severe accident analysis, and the severe accident management study of Maanshan NPP in the near future.