ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Dale B. Lancaster, Emilio Fuentes, Chi H. Kang, Meraj Rahimi
Nuclear Technology | Volume 125 | Number 3 | March 1999 | Pages 255-270
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A2946
Articles are hosted by Taylor and Francis Online.
A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps:1. Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. Chemical assay benchmarks are used for this purpose, in conjunction with a method for assessing the calculational bias and uncertainty for each isotope.2. Validate a computer code system to predict the subcritical multiplication factor keff of an SNF package by use of UO2 and UO2/PuO2 critical experiments. The method uses an upper safety limit on keff (which can be a function of trending parameters) to ensure that the calculated keff when increased for the bias and uncertainty is <0.95.3. Establish conditions for the SNF (depletion analysis) and package (criticality analysis) that bound keff. Bounding axial and horizontal profiles must be established to ensure that the "end effect" and "horizontal effect" are accounted for conservatively.4. Use the validated codes and bounding conditions to generate package-loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment.5. Verify by measurement that SNF assemblies meet the package-loading criteria, and confirm proper assembly selection prior to loading.