ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Goodluck I. Ofoegbu, Amvrossios C. Bagtzoglou, Ronald T. Green, Michael A. Muller
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 235-253
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2945
Articles are hosted by Taylor and Francis Online.
Numerical modeling was conducted to identify potential perched-water sites and examine the effects of perched water on thermally driven moisture flow at the proposed Yucca Mountain repository for high-level nuclear waste. It is demonstrated that perched-water zones may occur at two horizons on the up-dip side of faults such as the Ghost Dance Fault (GDF): in nonwelded volcanic strata [such as the Paintbrush Tuff nonwelded (PTn) stratigraphic unit], where juxtaposition of welded strata against nonwelded may constitute a barrier to lateral flow within the nonwelded strata; and in fractured horizons of underlying welded units [such as the Topopah Spring welded (TSw) unit] because of focused infiltration fed by overlying perched zones. The potential perched zones (PPZs) may contain perched water (which would flow freely into a well or opening) if infiltration rates are high enough. At lower infiltration rates, the PPZs contain only capillary-held water at relatively high saturations. Areas of the proposed repository that lie below PPZs are likely to experience relatively high percolation flux even if the PPZ contains only capillary-held water at high saturation. As a result, PPZs that contain only capillary-held water may be as important to repository performance as those that contain perched water. Thermal loading from emplaced waste in the repository is not likely to have an effect on PPZs located an adequate distance above the repository (such as in the PTn). As a result, such PPZs may be considered as permanent features of the environment. On the other hand, PPZs close to the repository depth (such as those that may occur in the TSw rock unit) would experience an initial period of spatial growth and increased saturation following waste emplacement. Thereafter, drying would begin at the repository horizon with perched-zone growth simultaneously above and below the repository. As a result, after the initial period of expansion, PPZs close to the repository horizon would undergo a period of net dissipation followed by a period of net rejuvenation. The duration of perched-zone dissipation decreases with increasing infiltration rate from the ground surface and varies spatially, depending on distance from the controlling fault. Areas of the repository close to, and on the up-dip side of, faults such as the GDF are likely to experience relatively long periods of wetness and high percolation flux.