ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Andreas Ikonomopoulos, Akira Endou
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 225-234
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT99-A2944
Articles are hosted by Taylor and Francis Online.
A methodology is presented that makes use of wavelet bases as a means for computing the probability density functions associated with different system states in a nuclear environment. Multiresolution analysis is coupled with multivariate statistics to form a tool powerful enough to estimate multidimensional density functions from highly correlated system variables. Wavelets that adapt well to local characteristics of rapidly varying functions are employed as building blocks of the proposed approach. The identification of different system states is a first step toward developing a reference pattern database that may be used for identifying future abnormal behavior. The methodology is illustrated by monitoring parameters from two nuclear reactor systems. In the first case, data from the secondary heat transfer system of the Monju fast breeder reactor have been used, while in the latter, neutron noise from an experimental reactor facility has been analyzed to detect bubble flow. The results obtained exhibit the potential value of the proposed scheme, which appears capable of distinguishing among various steady-state and transient conditions.