ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Sung Jin Lee, Chan Y. Paik, Robert E. Henry, Michael Epstein, Martin G. Plys
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 182-196
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2941
Articles are hosted by Taylor and Francis Online.
The Modular Accident Analysis Program Version 4 (MAAP4) is an integrated severe accident analysis code that integrates a large number of phenomena and models into a single plant simulation. MAAP4 was used to predict the containment response to a simulated small-break loss-of-coolant accident steam blowdown followed by the release of a hydrogen/helium gas mixture (test E11.2) in the decommissioned German Heiss Dampf Reaktor facility. The test also incorporated external spray cooling of the steel dome near the end of the transient. In MAAP4, 29 nodes and 44 flow junctions were used to model the highly compartmentalized containment. The MAAP4 prediction of the containment pressure and gas temperature over the duration of the transient and the transient distribution of hydrogen/helium in the containment compartments are compared with experimental results. MAAP4 overpredicts the pressure and correctly predicts the thermal and hydrogen stratification that was observed in the E11.2 test.