ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Lothar Wolf, Ashok Rastogi, Dag Wennerberg, Thomas Cron, Edgar Hansjosten
Nuclear Technology | Volume 125 | Number 2 | February 1999 | Pages 136-154
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2938
Articles are hosted by Taylor and Francis Online.
The contribution by the Heiss Dampf Reaktor Safety Program, phase III, to the German containment hydrogen research activities were twofold:1. to confirm the findings of the experiments in the Battelle Model Containment (BMC) in volumes of typically ~100 m3 by similar ones at a larger scale with a total volume of 500 m32. to broaden the database for assessing the emerging modeling strategy for larger scales toward more realistic subcompartment sizes.To supplement the results obtained in the BMC in a proper, controlled manner for additional model development and computer code verification, a total of seven experiments was performed, and the following positions for hydrogen ignition were examined:test group E12.1: hydrogen deflagration in a vertically oriented subcompartmenttest group E12.2: ignition close to the venttest group E12.3: accelerated jet ignition in a horizontal direction.The maximum peak pressure occurred for E12.3.3 at 1.8 bars under typical accelerated jet ignition conditions for 12 vol% initial H2 concentration. Because of larger vent openings, maximum peak pressures were generally lower than observed in BMC tests, whereas maximum temperatures were substantially higher, reaching 1000°C and above. A few comparisons between data and code results from CONTAIN, RALOC-HYDCOM, and CONTAIN/BASSIM computations are shown, indicating the need for further improvements.