ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Hot Fuel Examination Facility named a Nuclear Historic Landmark
The American Nuclear Society recently announced the designation of three new nuclear historic landmarks: the Hot Fuel Examination Facility (HFEF), the Neely Nuclear Research Center, and the Oak Ridge Gaseous Diffusion Plant. Today’s article, the first in a three-part series, will focus on the historical significance of HFEF.
Mary Lou Dunzik Gougar, Barry E. Scheetz, Darryl D. Siemer
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 93-103
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2935
Articles are hosted by Taylor and Francis Online.
A cement capable of being hot isostatically pressed into a glass ceramic has been proposed as the waste form for spent-nuclear-fuel reprocessing wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). This intermediate cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed INEEL wastes, blast furnace slag, reactive silica, and INEEL soil or vermiculite, which were activated with potassium or sodium hydroxide. Following autoclave processing, the cements were characterized. X-ray diffraction analysis revealed three notable crystalline phases: quartz, calcite, and fluorite. Results of compressive strength testing ranged from 1452 to 4163 psi, exceeding the U.S. Nuclear Regulatory Commission (NRC)-suggested standard of >500 psi. From American National Standards Institute/American Nuclear Society 16.1-1986 leach testing, effective diffusivities for Cs were determined to be on the order of 10-11 to 10-10 cm2/s and for Sr were 10-12 cm2/s, which are four orders of magnitude less than diffusivities in some other radwaste materials. Average leach indices (LI) were 9.6 and 11.9 for Cs and Sr, respectively, meeting the NRC standard of LI > 6. The 28-day Materials Characterization Center-1 leach testing resulted in normalized elemental mass losses between 0.63 and 28 g/(m2day) for Cs and between 0.34 and 0.70 g/(m2day) for Sr. Strontium mass losses meet the <1 g/(m2day) industry-accepted standard while Cs losses indicate a process sensitive parameter.