ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Jiawei Sheng, Shanggeng Luo, Baolong Tang
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 85-92
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2934
Articles are hosted by Taylor and Francis Online.
Borate waste is the main liquid waste generated by nuclear power plants (NPPs). Vitrification is conceptually attractive because of the potential durability of the final product, the flexibility of the process in treating a wide variety of waste streams, and the economy of large volume reduction. The vitrification of borate waste from NPPs, including the glass formulation and product characterization, is examined. The Minimum Additive Waste Stabilization (MAWS) concept was utilized to design the glass formulation. The glass formulation named SL-1, which can incorporate 45 wt% of waste oxides, was selected. The SL-1 glass has good chemical stability, the melting temperature is 1000°C, and the viscosity of molten glass is ~5.0 Pas at 1000°C. The borosilicate glass form could satisfactorily solidify borate waste with high volume reduction.