ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jiawei Sheng, Shanggeng Luo, Baolong Tang
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 85-92
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT99-A2934
Articles are hosted by Taylor and Francis Online.
Borate waste is the main liquid waste generated by nuclear power plants (NPPs). Vitrification is conceptually attractive because of the potential durability of the final product, the flexibility of the process in treating a wide variety of waste streams, and the economy of large volume reduction. The vitrification of borate waste from NPPs, including the glass formulation and product characterization, is examined. The Minimum Additive Waste Stabilization (MAWS) concept was utilized to design the glass formulation. The glass formulation named SL-1, which can incorporate 45 wt% of waste oxides, was selected. The SL-1 glass has good chemical stability, the melting temperature is 1000°C, and the viscosity of molten glass is ~5.0 Pas at 1000°C. The borosilicate glass form could satisfactorily solidify borate waste with high volume reduction.