ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Martin J. R. Pierre, Hugues W. Bonin
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 1-12
Technical Paper | Fission Reactors | doi.org/10.13182/NT99-A2928
Articles are hosted by Taylor and Francis Online.
The availability of the Monte Carlo-based code MCNP 4A has made possible the simulation of the low-enriched uranium (LEU)-fueled SLOWPOKE-2 reactor using a probabilistic approach. The reactor core and its surrounding pool can be modeled in three dimensions with numerous details included in the representation. Significant improvement from previous modeling attempts was obtained with the MCNP 4A simulation, with the discrepancy between the calculated and experimental values of the excess reactivity at 20°C reduced to only 0.2 mk. The analysis suggests the error of the MCNP 4A-calculated excess reactivity as between 1 and 2 mk.The SLOWPOKE-2 reactor was then simulated with its single control rod at various degrees of insertion in the core: The reactivity worth of the rod was calculated as 7.85 mk, only 2.4 mk above the measured value. MCNP was then used for predicting the temperature effects on the excess reactivity. Although the inherent safety of the SLOWPOKE-2 reactor was confirmed in the simulation, the temperature dependence of the excess reactivity could not however be accurately predicted, due for the most part to the lack of appropriate cross-section libraries available at the time of this work. The potential of MCNP 4A is nevertheless clearly demonstrated for the simulation of the LEU-fueled SLOWPOKE-2 reactor, once the missing cross sections become available for the low temperatures at which the reactor operates.