ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Kuan-Chywan Tu, Chien-Hsiung Lee, Shih-Jen Wang, Bau-Shei Pei
Nuclear Technology | Volume 124 | Number 3 | December 1998 | Pages 243-254
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2923
Articles are hosted by Taylor and Francis Online.
A new mechanistic critical heat flux (CHF) model has been developed for flow boiling CHF data of low-pressure (i.e., 0.2 to 4.0 MPa), low-mass-flux (i.e., 189 to 789 kg/m2s), and high-quality conditions. In general, CHF at these conditions associates with the flow regime of annular flow. This model assumes that the Helmholtz instability at the liquid-vapor interface of annular flow triggers the onset of CHF. CHF is the energy required to dryout the liquid film isolated by flow instability. With five empirical constants to properly correlate the liquid-vapor configurations of annular flow in the steam-water systems, the model successfully achieves a mean deviation error of 10.2% over a CHF data set consisting of 733 CHF data. The prediction of this model is more accurate than those of Biasi and Bowring correlations at the aforementioned low-pressure and low-mass-flux conditions.