ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Kuan-Chywan Tu, Chien-Hsiung Lee, Shih-Jen Wang, Bau-Shei Pei
Nuclear Technology | Volume 124 | Number 3 | December 1998 | Pages 243-254
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2923
Articles are hosted by Taylor and Francis Online.
A new mechanistic critical heat flux (CHF) model has been developed for flow boiling CHF data of low-pressure (i.e., 0.2 to 4.0 MPa), low-mass-flux (i.e., 189 to 789 kg/m2s), and high-quality conditions. In general, CHF at these conditions associates with the flow regime of annular flow. This model assumes that the Helmholtz instability at the liquid-vapor interface of annular flow triggers the onset of CHF. CHF is the energy required to dryout the liquid film isolated by flow instability. With five empirical constants to properly correlate the liquid-vapor configurations of annular flow in the steam-water systems, the model successfully achieves a mean deviation error of 10.2% over a CHF data set consisting of 733 CHF data. The prediction of this model is more accurate than those of Biasi and Bowring correlations at the aforementioned low-pressure and low-mass-flux conditions.