ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Kuan-Chywan Tu, Chien-Hsiung Lee, Shih-Jen Wang, Bau-Shei Pei
Nuclear Technology | Volume 124 | Number 3 | December 1998 | Pages 243-254
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2923
Articles are hosted by Taylor and Francis Online.
A new mechanistic critical heat flux (CHF) model has been developed for flow boiling CHF data of low-pressure (i.e., 0.2 to 4.0 MPa), low-mass-flux (i.e., 189 to 789 kg/m2s), and high-quality conditions. In general, CHF at these conditions associates with the flow regime of annular flow. This model assumes that the Helmholtz instability at the liquid-vapor interface of annular flow triggers the onset of CHF. CHF is the energy required to dryout the liquid film isolated by flow instability. With five empirical constants to properly correlate the liquid-vapor configurations of annular flow in the steam-water systems, the model successfully achieves a mean deviation error of 10.2% over a CHF data set consisting of 733 CHF data. The prediction of this model is more accurate than those of Biasi and Bowring correlations at the aforementioned low-pressure and low-mass-flux conditions.