ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Alvin Radkowsky, Alex Galperin
Nuclear Technology | Volume 124 | Number 3 | December 1998 | Pages 215-222
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2921
Articles are hosted by Taylor and Francis Online.
The nonproliferative light water thorium technology, also known as RTF (Radkowsky thorium fuel), provides a new approach to light water reactor core design. An RTF core is completely nonproliferative for all practical purposes, provides major reductions in radwaste, reduces fuel cycle cost and consumption of natural uranium, does not require soluble boron control during operation, and is once-through (i.e., does not require reprocessing). The core is made up of multiple seed-blanket units with uranium-zirconium alloy in the seed regions and thorium oxide with ~10% uranium oxide in the blanket regions. A key advantage is that an RTF core has exactly the same control drives and support plates. An RTF core with plutonium substituted for uranium is also optimum for incinerating either weapons- or reactor-grade plutonium, burning at three times the rate obtainable with mixed oxide (MOX). Use of MOX also requires considerable core modifications and produces 60% new plutonium, while RTF core produces none.