ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Do Heon Kim, Jong Kyung Kim
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 175-182
Technical Paper | Radiation Biology and Medicine | doi.org/10.13182/NT98-A2917
Articles are hosted by Taylor and Francis Online.
A subcritical multiplying assembly (SMA) was employed to improve the relatively low neutron fluxes of a 252Cf source, and the feasibility of using it as the neutron source for boron neutron capture therapy was explored. The Monte Carlo code MCNP was used to evaluate the effective multiplication factor keff of the entire system, the intensities and percentages of the epithermal neutron flux at the patient-end surface of the beam, and dosimetric properties of the beam in the elliptical brain phantom. The neutron beam with the SMA provides an epithermal neutron flux ~13.2 times higher than the beam without the SMA. After some optimization procedures, the beam in the final design provides a maximum advantage depth (AD) of 8.9 cm, a minimum AD of 7.3 cm, an advantage ratio of 5.5, and a therapeutic relative biological effectiveness dose rate of 4.23 cGy/min per 100 mg of 252Cf at a depth of 7.0 cm in the brain phantom. This dose rate is ~10 times higher than that provided by the beam designed without the SMA. Therefore, it is expected that the neutron beam can be more effective for treatment of tumors due to the increased therapeutic dose rates.