ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Katsuyoshi Tatenuma, Yukio Hishinuma, Satoshi Tomatsuri, Kousaburo Ohashi, Yoshiharu Usui
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 147-164
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT98-A2915
Articles are hosted by Taylor and Francis Online.
A new gas-phase decontamination technology is developed based on gaseous reactions utilizing the volatile properties of the carbonyl and fluoric compounds of radioactive transition elements and actinides (corrosion products, fission products, and transuranium) on a material's surface. The feasibility of this new technology is determined by removing nonradioactive (Co, Cr, Ni, Re, Mo, Mn, Ru, and Zn) and radioactive (60Co, 63Ni, and 103Ru) nuclide transition elements as gaseous forms under high CO pressure (50 to 200 atm) and high temperature (~350°C). Experiments involving U and using fluoric gases are also performed. For radioactive nuclides existing in an oxide layer of stainless steel, pretreatment with supercritical CO2 + I2 + H2O is used to remove the oxide layer completely, and by the subsequent gaseous reaction, 95 to 99% of 60Co is removed from the layer by CO gas treatment at a pressure of 200 atm. The plasma treatment using fluorine gas results in U being removed with high efficiency (~60%) after only 5 min, even at a reduced pressure of 1 Torr and at room temperature. When the carbonyl and fluoric species generated from a nontoxic gas mixture (1 Torr) of CF4 and O2 is used, U and 60Co are removed simultaneously with high removal efficiencies of 80 and 100% for 60Co and U, respectively. The data provide evidence that chemically reactive plasma treatment is available as a gas-phase decontamination method that can be conducted using nontoxic gases under safe and mild conditions such as reduced pressure, shorter time periods, and ambient temperature. Finally, a fluoric chemical reaction can be used to remove solid U deposits by converting them to gaseous U compounds at room temperature and without using plasma treatment. The pressure of ClF3 gradually affects the higher removal efficiency of U, and the removal efficiency is >90% under the conditions of 30 min and >100 Torr. The results verify that chemical reactions involving carbonylation and fluorination reactions can be utilized for gas-phase decontamination, and the potential for this new idea for decontamination is affirmed.If gas-phase decontamination technology is further developed, it will be not only convenient but also economically advantageous because decontaminating and treating the large volume of nuclear wastes - especially nonincinerable radioactive wastes - are currently very difficult.