ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
ANS sends waste policy recommendations to DOE
The American Nuclear Society has sent a letter to Energy Secretary Chris Wright with a set of recommendations for the Department of Energy to take to establish an effective national program to manage the storage, reprocessing, and final disposal of U.S. commercial used nuclear fuel.
Igor Salamun, Andrej Stritar
Nuclear Technology | Volume 124 | Number 2 | November 1998 | Pages 118-137
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT98-A2913
Articles are hosted by Taylor and Francis Online.
Diagnostic methodologies for nuclear power plants (NPPs) are usually based on mathematical models and generation of residuals. To avoid complicated, time-consuming, and costly diagnostic simulations of the physical phenomena in NPPs, an algorithm that determines a significant pattern for major transients is investigated. Coefficients of the transfer function between the observed parameters are used as the pattern features. The algorithm uses a recurring least-squares method known from the literature to determine the transfer functions. The case study includes 30 different scenarios in the primary and secondary systems. Each scenario produces its own significant recognized pattern. The RELAP5/MOD3.2 code is used to simulate the input data for the Krsko pressurized water reactor NPP. The algorithm recognizes the prepared scenarios, and it classifies them into groups.