ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Mark S. Jarzemba
Nuclear Technology | Volume 124 | Number 1 | October 1998 | Pages 82-87
Technical Paper | Reprocessing | doi.org/10.13182/NT98-A2910
Articles are hosted by Taylor and Francis Online.
A method is described to estimate the heat generation rate of various high-level waste (HLW) forms composed primarily of either a sludge (with a composition similar to that in the Hanford HLW tanks) or borosilicate glass. The main heat source is from radioactive decay and subsequent self-absorption of particles emitted from 137Cs, 90Sr, or their radioactive daughters contained in the waste form. The heat generation rate of the waste form is usually an important parameter in safety and performance assessments and will likely be a part of the specifications required for the vitrified waste. The heat generation rate depends on the size of the waste because larger waste forms will tend to absorb a greater fraction of the gamma radiation from 137mBa decays (a short-lived radioactive daughter of 137Cs). Because beta radiation from these two nuclides is short ranged (only a few tenths of a millimetre in water), assumption of complete self-absorption of beta radiation is justifiable. Previous work in this area estimated upper and lower bounds for the volume-averaged heat generation rate per litre of waste based on total (i.e., large-sized waste forms) and zero (i.e., small-sized waste forms) self-absorption of gamma radiation emitted from 137mBa. This analysis extends the previous work to more adequately estimate the heat generation rate of intermediate-sized waste forms based on the composition of the waste (either borosilicate glass or a simulated sludge), and the size of the waste as characterized by the surface-area-to-volume ratio. The analyses are based on runs of the MCNP version 4A code.