ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Charles W. Forsberg, Edward C. Beahm
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 341-349
Technical Note | Reprocessing | doi.org/10.13182/NT98-A2904
Articles are hosted by Taylor and Francis Online.
A new process has been invented that converts complex wastes containing fissile materials into a chemical form that allows the use of existing technologies (such as Purex and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (a) uranium fissile wastes, (b) miscellaneous spent nuclear fuel, and (c) plutonium scrap and residue. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics.The process consists of three major sets of process operations. During the first set of operations, the feed is dissolved into molten lead-borate glass and then converted to a boron oxide (B2O3) fusion melt. During this process, (a) the organics and metals are oxidized and (b) the halides and noble metals are separated from the melt. During the second set of operations, the cooled fusion melt is dissolved into nitric acid, and the uranium and plutonium are recovered from the acid using standard aqueous separation processes such as Purex and ion exchange. During the third set of operations, standard waste vitrification processes convert the residual waste to borosilicate glass. The B2O3 can be recovered and recycled at several locations within the process.