ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
A. Ryan Whited, Robert A. Fjeld, James R. Cook
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 304-319
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2901
Articles are hosted by Taylor and Francis Online.
Vitrification, the conversion of source components into a solid amorphous glass matrix, has emerged as a viable treatment technology for low-level radioactive waste and mixed waste. To dispose of vitrified low-level waste at U.S. Department of Energy facilities, site-specific radiological performance assessments must be conducted to demonstrate that waste glass satisfies performance objectives for environmental protection. More than 2500 m3 of F006-listed low-level mixed-waste sludge stored in the Reactor Materials Department (M-Area) at the Savannah River Site (SRS) is scheduled for vitrification. This study evaluates the feasibility of on-site disposal of vitrified M-Area waste at SRS.Laboratory leaching tests that accelerate the glass corrosion process are currently the best indicators of vitrified waste form durability. A method to incorporate laboratory leaching data into performance assessments is presented. A screening-level performance assessment code is used to model trench disposal of M-Area waste glass. The allowable leach rate for vitrified M-Area waste is determined based on both a maximum radiological dose equivalent of 4 mrem/yr for the drinking water pathway and a maximum uranium concentration of 20 g/l in groundwater. The allowable leach rate is compared with published long-term leaching data for a wide range of waste glass compositions and test conditions. This analysis demonstrates that trench disposal of the waste glass is likely to meet applicable performance objectives if the glass is of above average durability compared with the reference set of glasses.