ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
A. Ryan Whited, Robert A. Fjeld, James R. Cook
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 304-319
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2901
Articles are hosted by Taylor and Francis Online.
Vitrification, the conversion of source components into a solid amorphous glass matrix, has emerged as a viable treatment technology for low-level radioactive waste and mixed waste. To dispose of vitrified low-level waste at U.S. Department of Energy facilities, site-specific radiological performance assessments must be conducted to demonstrate that waste glass satisfies performance objectives for environmental protection. More than 2500 m3 of F006-listed low-level mixed-waste sludge stored in the Reactor Materials Department (M-Area) at the Savannah River Site (SRS) is scheduled for vitrification. This study evaluates the feasibility of on-site disposal of vitrified M-Area waste at SRS.Laboratory leaching tests that accelerate the glass corrosion process are currently the best indicators of vitrified waste form durability. A method to incorporate laboratory leaching data into performance assessments is presented. A screening-level performance assessment code is used to model trench disposal of M-Area waste glass. The allowable leach rate for vitrified M-Area waste is determined based on both a maximum radiological dose equivalent of 4 mrem/yr for the drinking water pathway and a maximum uranium concentration of 20 g/l in groundwater. The allowable leach rate is compared with published long-term leaching data for a wide range of waste glass compositions and test conditions. This analysis demonstrates that trench disposal of the waste glass is likely to meet applicable performance objectives if the glass is of above average durability compared with the reference set of glasses.