ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Aaron E. Craft, Jeffrey C. King
Nuclear Technology | Volume 185 | Number 1 | January 2014 | Pages 85-99
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT13-4
Articles are hosted by Taylor and Francis Online.
The fleet of research and training reactors is aging, and no new research reactors are planned in the United States; thus, there is a need to expand the capabilities of existing reactors to meet users' needs. To address these needs, the Colorado School of Mines added a neutron beamline facility to the U.S. Geological Survey TRIGA Reactor (GSTR), a 1-MW(thermal) Mark-I TRIGA reactor located at the Denver Federal Center in Lakewood, Colorado. The original GSTR design did not include any beam ports, and future research efforts will benefit from a neutron beam at the GSTR. Adding new beamline facilities to existing research reactors is both rare and challenging, and this paper describes the design and installation of a new neutron beamline facility at a Mark-I TRIGA reactor with no existing beamline facilities. The design and construction of a radiation beamstop for the new beamline is described in detail. A neutronics model of the neutron beam provides researchers with a useful tool for experiment design. The new neutron beam has a measured length-to-diameter ratio of 200 ± 10, a neutron flux of 2.2×106 ± 6.4×105 n/cm2-s, and an average cadmium ratio of 7.4 using copper, gold, manganese, and indium foils.