ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Ninos S. Garis, Imre Pázsit, Urban Sandberg, Tell Andersson
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 278-295
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT98-A2899
Articles are hosted by Taylor and Francis Online.
A method is described by which the axial position of a control rod can be determined. The method is based on the influence of a partially inserted control rod on the axial flux profile. By measuring this flux profile, the control rod position can be in principle unfolded. One problem is however that the relationship between rod position and flux profile is rather implicit and cannot be explicitly inverted. Thus, it is suggested here to use neural network techniques to unfold the rod position from the measured flux profile. For training of the network, a large number of flux profiles are needed, corresponding to various known rod positions. These data can be generated by advanced core calculational codes. In this study, the Studsvik core master system SIMULATE was used. The method was tested with good results on both fully simulated data as well as on a measurement taken at the Swedish pressurized water reactor Ringhals 4.