ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Kazuhiko Kunitomi, Yukio Tachibana, Akio Saikusa, Kazuhiro Sawa, Lawrence M. Lidsky
Nuclear Technology | Volume 123 | Number 3 | September 1998 | Pages 245-258
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2896
Articles are hosted by Taylor and Francis Online.
The severe-accident-free high-temperature gas-cooled reactor (SFHTR) is a prototype design for a next generation reactor. It is suitable for widespread deployment by virtue of its inherent safety features and very long refueling interval. Furthermore, its inherent safety features can be demonstrated by full-scale tests. Many of these features may be demonstrated in the High-Temperature Engineering Test Reactor (HTTR).The SFHTR is designed to have the probability of a severe accident at least two orders lower than existing systems. The fuel will not exceed its failure temperature even in the event of complete loss of coolant or complete withdrawal of two control rods. A unique configuration of burnable poisons allows a fuel cycle of 16 yr and a burnup exceeding 120 GWd/t. This feature promises very high availability and good economics.We have designed two SFHTR systems. The larger one, called the MSFHTR, has a 450- to 600-MW thermal capacity and is intended for the production of hydrogen and electricity. The smaller SFHTR (SSFHTR) is intended for remote areas, off the electrical grid, for simultaneous production of electricity and desalinated water. The SSFHTR can produce 23.5 MW(electric) plus 40 t/h of water with a net efficiency of 47%.The HTTR is capable of conducting full-scale simulation testing of key SFHTR design features in order to confirm and extend the designs and as a first step in convincing the public and the licensing authorities of the validity of demonstrable inherent safety. Design features of a 50-MW SFHTR focusing on the safety concept, safety evaluation, and core design are described. In addition, an HTTR-based test-and-development program for the SFHTR is presented.