ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Leonhard Meyer, Gustav Schumacher, Helmut Jacobs, Kalman Thurnay
Nuclear Technology | Volume 123 | Number 2 | August 1998 | Pages 142-155
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT98-A2888
Articles are hosted by Taylor and Francis Online.
The multiphase, transient, and three-dimensional interaction of molten corium with water during the premixing phase of a steam explosion is simulated in the QUEOS facility using a large number of small solid spheres at temperatures up to 2300 K. The objective of the experiments is to establish a database for testing the models of heat and momentum transfer in multifluid codes as well as the codes' capability to correctly describe multiphase flows. Three experiments with up to 10 kg of spheres made of molybdenum are discussed. Results from calculations with the IVA-KA code are compared with experimental data. The agreement obtained is encouraging, and the calculations show that the intense multiphase interactions obtained in QUEOS constitute very critical and thus valuable test cases.