ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Woan Hwang, Cheol Nam, Thak Sang Byun, Young Cheol Kim
Nuclear Technology | Volume 123 | Number 2 | August 1998 | Pages 130-141
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2887
Articles are hosted by Taylor and Francis Online.
Computational models for analyzing in-reactor behavior of metallic fuel pins in liquid-metal reactors under steady-state conditions are developed and implemented in the Metal fuel performance Analysis (computer) Code for Simulating the In-reactor behavior under Steady-state conditions (MACSIS). Sodium logging and constituent redistribution effects are considered in calculating the temperature profile. The model for the radial redistribution of the fuel constituent is based on the thermotransport theory. The fission gas release model takes multibubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary. Finally, the clad strains are calculated from the amount of fission gas released and interface pressure. Sample calculations are performed to verify each model. The results show that in general, the predictions of MACSIS agree well with the available irradiation data.