ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Richard A. Wolfe
Nuclear Technology | Volume 9 | Number 2 | August 1970 | Pages 218-228
Reactor Siting | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28810
Articles are hosted by Taylor and Francis Online.
Calculations show that a 10% isotopic abundance of 238 Pu in a bare spherical 239 Pu-H2O system increases the minimum critical mass by ∼48%, thereafter the increase continues exponentially. These results, in addition to several subcritical neutron multiplication experiments with 238 Pu in both solution and dioxide form, confirm that 238 Pu behaves as a neutron poison in a well-moderated medium. Neutron multiplication experiments were conducted with four SNAP-19B (IRHS) heat sources with ∼1 kg 238 Pu per source. The results indicated that a neutron multiplication <1.2 existed when the heat sources were assembled in different array configurations. The criticality unit value for 238 Pu in either solution or dioxide form has been conservatively established at 2.0 kg. Thermocouples installed on process vessels have proven to be a new criticality control technique for determining gradual 238 Pu sludge buildup. Heterogeneous water-filled storage vaults provide the safest method for storing large quantities of PuO2 containing at least 76% 238Pu.