ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
H. R. Warner, F. A. Nichols
Nuclear Technology | Volume 9 | Number 2 | August 1970 | Pages 148-166
Fuel Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28805
Articles are hosted by Taylor and Francis Online.
A computer simulation of a fuel region has been developed based on movement of fission gas bubbles in solids under a thermal gradient. Within this region, fission gas events are followed via a Monte Carlo technique. Individual bubbles are followed through their time history from nucleation to release from the fuel, with interactions at dislocations and grain boundaries. Saturation in gaseous swelling at elevated temperature is predicted. A maximum in swelling is predicted at intermediate temperatures for a given burnup. These swelling and gas release predictions at high temperatures are in good agreement with experimental results. A low temperature modification of dislocation density is required to allow for effects dominant at low temperature which are not included in the current version of the program. With this low temperature modification, swelling predictions are in good agreement with experimental observations over the entire operating temperature range.