ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
C. C. Dollins, H. Ocken
Nuclear Technology | Volume 9 | Number 2 | August 1970 | Pages 141-147
Fuel Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28804
Articles are hosted by Taylor and Francis Online.
Current fuel swelling models based upon the growth of fission gas bubbles do not consider effects due to radiation induced re-solution phenomena. This paper describes a fission gas swelling model which assumes that fission fragments will destroy existing gas bubbles and maintain the resulting gas atoms in supersaturated solid solution. Such a model should be particularly applicable to fuels operating at low temperatures and high fission rates. Bubble nucleation and growth then take place until another fission fragment again passes through the same region. Bubble growth is calculated using reaction rate theory over the period of time in which no radiation damage occurs. The model predicts bubble growth significantly smaller than that experimentally determined in UO2. This discrepancy is attributed to assumptions made in defining the re-solution mechanism. The model implies that fission gas bubble growth is a state junction independent of path.