ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Patrick Jollivet, Michèle Nicolas, Etienne Vernaz
Nuclear Technology | Volume 123 | Number 1 | July 1998 | Pages 67-81
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2880
Articles are hosted by Taylor and Francis Online.
A calculation code was developed by the Commissariat à l'Energie Atomique to estimate the influence of the major parameters of a geologic repository site on the alteration of a high-level vitrified waste package. The model is based on a first-order kinetic law and on a deviation concerning saturation with respect to H4SiO4. Glass alteration is governed by the coefficient of silicon diffusion in the interstitial water of the gel layer and by the leachate renewal rate (i.e., the flow rate in the repository) if it is of very low magnitude. The effects of the other parameters are much less significant. When applied to the alteration of natural basalts, the code seems to indicate that the gel conserves its diffusion barrier properties for a long time. Finally, the validity of the underlying hypotheses of the code is discussed.