ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
J. R. Coombe, R. P. Shogan
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 396-401
Material | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28793
Articles are hosted by Taylor and Francis Online.
The effect of temperature on radiation characteristics and subsequent material properties after cryogenic temperature irradiation is analyzed. To date the materials tested have included hot pressed block beryllium, Ti-5% Al-2.5% Sn ELI (Al10AT), and an aluminum alloy 2219. These materials have been irradiated at liquid nitrogen temperatures (140°R) and tensile tested without any intervening warm-up. Some of the liquid nitrogen irradiated and tested material data as well as room temperature data are presented. The properties investigated have included ultimate tensile strength, percent elongation, and fracture toughness. Usually, ductility and the decrease in the magnitude of this property as a function of irradiation is of more vital interest to the designer. The experimental program conducted for some of the NERVA candidate materials is reported and areas of additional investigations for application to advanced NERVA designs are briefly discussed.