ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
R. Bullough, B. L. Eyre, R. C. Perrin
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 346-355
Fuel Element Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28789
Articles are hosted by Taylor and Francis Online.
A model has been developed to describe the kinetics of void growth in metals during irradiation which explicitly includes the presence of both migrating interstitials and vacancies. It is clear that void growth can occur only when an excess flux of vacancies arrives at the void surface and this can be achieved by taking into account the preferred drift of the interstitials to the dislocation sinks as a result of the long-range size effect interaction. Results of numerical calculations of the vacancy and interstitial average concentration in stainless steel and molybdenum irradiated under typical fast reactor conditions are presented, and these are used to calculate void growth rates as a function of temperature. It is shown that the void growth rate goes through a maximum when plotted against temperature and this is consistent with the experimental swelling data. During the early stages of irradiation, when the number of point defects arriving at voids is negligible compared with those being lost at other sinks, the swelling rate is proportional to (t)3 (t = time). Cold work has a beneficial effect in the early stages of irradiation by reducing the void growth rates, but it could have a deleterious effect over a long term by prolonging the period over which the swelling follows the rapid (t)3 law.