ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
T. R. Bump
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 301-308
Fuel Element Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28784
Articles are hosted by Taylor and Francis Online.
The SWELL fuel element lifetime code employs the “cumulative damage” approach to estimate when the cladding of an LMFBR mixed-oxide fuel element is likely to fail under normal and off-normal conditions. In the estimating process, properties and behavior of irradiated, as well as of unirradiated, cladding are considered. A unique feature of SWELL is its use of an empirical function, developed by calibration with experimental data, which relates the pressure-exerted-on-cladding-by-fuel-swelling to the pressure-of-fission-gas-retained-in-fuel. SWELL predicts that the lifetimes of some typical fuel elements will have to be reduced significantly if the elements are to be expected to withstand rather modest off-normal conditions near end of life. However, there are reasons why the predictions may be overly pessimistic. Early results from the newer and more-detailed LIFE fuel element behavior code indicate that the accuracy with which a fuel element's operating history is followed may be important for gaining understanding of the element's behavior. To conserve computer time, the best way to simulate actual history, as jar as cladding ΔD/D predictions are concerned, appears to be to use time-averaged power (excluding downtime) for a length of time sufficient to produce the actual burnup, which happens to be the SWELL practice.