ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
T. R. Bump
Nuclear Technology | Volume 9 | Number 3 | September 1970 | Pages 301-308
Fuel Element Performance Model | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28784
Articles are hosted by Taylor and Francis Online.
The SWELL fuel element lifetime code employs the “cumulative damage” approach to estimate when the cladding of an LMFBR mixed-oxide fuel element is likely to fail under normal and off-normal conditions. In the estimating process, properties and behavior of irradiated, as well as of unirradiated, cladding are considered. A unique feature of SWELL is its use of an empirical function, developed by calibration with experimental data, which relates the pressure-exerted-on-cladding-by-fuel-swelling to the pressure-of-fission-gas-retained-in-fuel. SWELL predicts that the lifetimes of some typical fuel elements will have to be reduced significantly if the elements are to be expected to withstand rather modest off-normal conditions near end of life. However, there are reasons why the predictions may be overly pessimistic. Early results from the newer and more-detailed LIFE fuel element behavior code indicate that the accuracy with which a fuel element's operating history is followed may be important for gaining understanding of the element's behavior. To conserve computer time, the best way to simulate actual history, as jar as cladding ΔD/D predictions are concerned, appears to be to use time-averaged power (excluding downtime) for a length of time sufficient to produce the actual burnup, which happens to be the SWELL practice.