ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. A. Baran, R. S. Reynolds, R. E. Faw, W. R. Kimel
Nuclear Technology | Volume 9 | Number 4 | October 1970 | Pages 591-604
Analysis | doi.org/10.13182/NT70-A28769
Articles are hosted by Taylor and Francis Online.
A method of calibrating a lead-collimated, sodium iodide scintillation spectrometer is reported. Nine radioisotopes with gamma-ray energies in the range from 0.046 to 1.114 MeV were used. Details of the methods of data acquisition and reduction are presented. Methods are described for using response functions from the nine radioisotopes to generate response matrices for the energy range from 20 to 1200 keV. Techniques for unfolding experimental data using response matrices are compared, and a detailed error analysis is presented. For the routine analysis of experimental data using direct matrix inversion, a 25 × 25 response matrix with unequally spaced energy intervals over the range 20 to 1200 keV was found to be near optimum.