ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Thomas S. Bustard, Frank T. Princiotta, Harold N. Barr
Nuclear Technology | Volume 9 | Number 4 | October 1970 | Pages 572-583
Radioisotope | doi.org/10.13182/NT70-A28767
Articles are hosted by Taylor and Francis Online.
A new reentry protection material has been developed which acts as a thermal switch. It is a composite material, consisting of a ceramic foam uniformly impregnated with a metal which coats the ceramic foam structure. The composite is a thermal conductor [k ≅ 5 Btu/(ft h °F)] below the melting point of the metal impregnant and switches to an insulator [k ≅ 0.1 Btu/(ft h °F)] above its melting point. This switching effect is irreversible. Materials investigated to date are silica, alumina, and zirconia foams with silver and copper as the metal impregnants. These combinations yield a thermal switch which is activated at the melting point of the impregnants, i.e., 1762°F for silver and 1982°F for copper. Other metals can be utilized to increase or decrease the switching temperature. These composite materials have specific application to radioisotope fueled space power systems. For this application, the material selected would be placed around the fuel capsule, allowing the heat to pass through with only a small temperature differential incurred. When exposed to a reentry heat pulse, the material would switch to an insulator, thereby allowing intact and safe reentry of the capsule. Thermal conductivity testing and plasma jet testing have been performed and indicate that the composite material is an effective reentry protection material.