ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
C. G. Miller, V. C. Truscello
Nuclear Technology | Volume 9 | Number 5 | November 1970 | Pages 722-735
Paper | Aerospace | doi.org/10.13182/NT70-A28748
Articles are hosted by Taylor and Francis Online.
A study was made to determine the extent of the interference that may be expected in the operation of spacecraft science instruments when the spacecraft carries a radioisotope thermoelectric generator. Suitable analytical models were developed to predict the effects of the radiation spectrum on the various selected components. The gamma radiation was expressed as a 20-group structure between the energies of 40 keV and 10 MeV; the detectors selected for detailed evaluation were Geiger-Mueller tubes, continuous-channel electron multipliers, and silicon surface barrier detectors. The conclusions were that with reasonable separation between the radioisotope thermoelectric generator and the sensitive science components (∼15-ft) individual detectors would require a pound or less of shielding material in order that an acceptable spurious counting rate would be achieved. For a typical spacecraft payload, including such experiments as the cosmic-ray telescope, trapped radiation detector, and a lowenergy proton and electron differential energy analyzer, <10 lb of shielding would be required. Recommendations for developmental methods that could lead to means to reduce this amount of shielding were also made.