ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
D. L. Brown, G. W. Tunnell
Nuclear Technology | Volume 9 | Number 5 | November 1970 | Pages 716-721
Paper | Material | doi.org/10.13182/NT70-A28747
Articles are hosted by Taylor and Francis Online.
The design, analysis, and operation of an experiment vehicle to test Fast Ceramic Reactor fuel under prototypical conditions in a thermal test reactor are discussed. The experiments are designed as capsules, with concentric annuli providing a closed loop sodium flow path and an electromagnetic pump to force circulation of the sodium coolant through the multiple fuel pin bundle. The capsules may be irradiated in either the pool or the core of the General Electric Test Reactor, and flux filters may be used to obtain the appropriate neutron spectrum. Pool experiments may be positioned with a movable facility which follows the reactor flux profile and allows adjustment of the experiment power. Additional flexibility in capsule performance is gained by using a binary gas control system which controls the capsule temperature by varying the composition of a gas mixture flowing through an annulus in the capsule. Given the above requirements of adjustable coolant flow and coolant temperature, and either variable power or neutron spectrum, plus practical considerations regarding configuration and fabrication, a design for an experiment can be realized. However, the task of reliably and accurately predicting capsule performance is formidable. Analytical techniques using advanced numerical and computer methods were developed which account for the significant factors influencing capsule performance. The program's capabilities include: conduction, convection, and radiation heat transfer for steady and transient cases, arbitrary three-dimensional lumped-parameter geometry, variable material properties, variable heat generation, computation and use of hot dimensions, and computation of thermal properties of a binary gas mixture. Results obtained from the first in-pile experiment confirm the concept, the manufacturing techniques, and the analytical model.