ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
D. L. Brown, G. W. Tunnell
Nuclear Technology | Volume 9 | Number 5 | November 1970 | Pages 716-721
Paper | Material | doi.org/10.13182/NT70-A28747
Articles are hosted by Taylor and Francis Online.
The design, analysis, and operation of an experiment vehicle to test Fast Ceramic Reactor fuel under prototypical conditions in a thermal test reactor are discussed. The experiments are designed as capsules, with concentric annuli providing a closed loop sodium flow path and an electromagnetic pump to force circulation of the sodium coolant through the multiple fuel pin bundle. The capsules may be irradiated in either the pool or the core of the General Electric Test Reactor, and flux filters may be used to obtain the appropriate neutron spectrum. Pool experiments may be positioned with a movable facility which follows the reactor flux profile and allows adjustment of the experiment power. Additional flexibility in capsule performance is gained by using a binary gas control system which controls the capsule temperature by varying the composition of a gas mixture flowing through an annulus in the capsule. Given the above requirements of adjustable coolant flow and coolant temperature, and either variable power or neutron spectrum, plus practical considerations regarding configuration and fabrication, a design for an experiment can be realized. However, the task of reliably and accurately predicting capsule performance is formidable. Analytical techniques using advanced numerical and computer methods were developed which account for the significant factors influencing capsule performance. The program's capabilities include: conduction, convection, and radiation heat transfer for steady and transient cases, arbitrary three-dimensional lumped-parameter geometry, variable material properties, variable heat generation, computation and use of hot dimensions, and computation of thermal properties of a binary gas mixture. Results obtained from the first in-pile experiment confirm the concept, the manufacturing techniques, and the analytical model.