ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Gregory J. Van Tuyle
Nuclear Technology | Volume 122 | Number 3 | June 1998 | Pages 330-354
Technical Paper | Accelerators | doi.org/10.13182/NT98-A2874
Articles are hosted by Taylor and Francis Online.
As a result of advances in particle accelerator technology and difficulties in building new nuclear reactors, increasingly ambitious applications of particle accelerator-driven spallation targets have been proposed in recent years. The simplest applications are the spallation neutron sources needed for basic nuclear sciences, with proton beams in the 1- to 5-MW range to be driven into targets of lead, mercury, or tungsten to produce neutron fluxes higher than is practical with nuclear reactors. On a much larger scale, the proposed accelerator production of tritium would use a 170-MW proton beam to generate sufficient neutrons to produce ~3 kg tritium/yr, based on neutron capture in a 3He feedstock. Other proposals include the use of subcritical neutron multiplication, using waste actinides and/or fertile actinides to transmute nuclear wastes or support alternate fuel cycles. The basic technology and technical aspects of the numerous-proposed applications are described. Fundamental relationships regarding machine efficiencies, neutron production, and subcritical multiplication are provided and utilized to cross-compare concepts.