ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Thomas J. Hirons, R. Douglas O'Dell
Nuclear Technology | Volume 9 | Number 1 | July 1970 | Pages 93-106
Fuel | Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material | doi.org/10.13182/NT70-A28731
Articles are hosted by Taylor and Francis Online.
The economic analysis of a large fast breeder is dependent on fuel-cycle parameters, such as fuel-discharge rate and breeding ratio. In this work, the variation of fuel-cycle parameters with several burnup-model characteristics was studied. These characteristics are the amount of region detail used in describing the reactor, the initial fissile content of the reactor, the maintenance of criticality during the burnup step, the distribution of the control poison during the burnup step, and the flux or power shift over the reactor lifetime. Each of these model characteristics was studied in detail for its effect on the burnup history of the reactor. The mass balances obtained from several of the burnup studies were input to a reactor economics code to determine the economic effects of changes in the model characteristics. The greatest effect on the fuel-cycle analysis was produced by the treatment of the relative flux shift between burnup intervals.